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Abstract 
 

This study investigated the prevalence of antibiotic resistance genes in bacteria 
isolated from water samples collected from Beymelek Lagoon, Turkey. Water samples 
were obtained at two different periods from five distinct locations within the lagoon. 
At each sampling site, environmental parameters, including temperature, pH, and 
salinity, were measured to provide a comprehensive understanding of the sampling 
conditions. A total of 16 bacterial strains were isolated from water samples collected 
in February, and an additional 12 strains were isolated from samples collected in 
August 2022. The isolates were identified using the VITEK2 Compact automated 
identification system. Among the 28 isolates obtained across the sampling periods, 16 
were classified as Gram-negative and 12 as Gram-positive. In this study 16 antibiotic 
resistance genes: aadA1, ampC, blaTEM, cfr, dfrA1, ermB, floR, intI1, mphA, qnrA, sul1, 
sul2, sul3, tetA, tetB, and tetW investigated. In February, the blaTEM gene was 
detected in 25% of the isolates, ermB in 7.14%, while sul1, sul2, and tetW genes were 
each identified in 3.57% of the isolates. In August, blaTEM, intI1, and tetW genes were 
detected in 17.86%, 25%, and 3.57% of the isolates, respectively. This study highlights 
the presence of antibiotic resistance genes in bacteria isolated from lagoon water.  

 

Introduction 
 

Antibiotics have been widely used to treat bacterial 
infections in humans and animals since their discovery 
(Bhat & Altinok, 2023; Liu et al., 2018). While most 
antibiotics are now synthetically manufactured, they are 
naturally produced by bacteria and fungi, organisms 
that have existed for millions of years. These 
microorganisms synthesize antibiotics as a survival 
strategy, enabling them to protect themselves, compete 
for food resources, colonize their habitats, and eliminate 
other microorganisms in their environment (Martínez, 
2008; Zhuang et al., 2021).  

These natural antibiotic producers, especially 
bacteria, are naturally resistant to the antibiotics they 
produce. Other bacteria in the environment try to 
survive by developing antibiotic resistance mechanisms 
or by acquiring them later (Jury et al., 2010; Leiva et al., 
2021). Based on this information, it is extremely 
important to consider that antibiotic resistance genes 
may also emerge in non-clinical environments and that 
resistance may develop against different antibiotics 
(Martínez, 2008). The spread of antibiotic-resistant 
bacteria into aquatic environments, including drinking 
water sources, represents one of the most significant 
threats to human health in the 21st century. This 
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growing issue poses challenges for public health, as it 
compromises the effectiveness of treatments and 
increases the risk of disease transmission through 
contaminated water. (Sanganyado & Gwenzi, 2019; 
CDC, 2019; World Health Organisaton, 2019). 

Lagoons, which are a transition zone between land 
and seas or oceans, are very sensitive to environmental 
changes due to their structure and may be rich in 
antibiotic-resistant bacteria. The accumulation and 
spread of antibiotic-resistant bacteria in lagoons (H. 
Wang et al., 2021) causes lagoon environments to serve 
as a source of transmission of these bacteria to both the 
environment, animals and humans (Dolejska & 
Papagiannitsis, 2018). It is thought that a better 
understanding of the role of environmental and social 
influences in shaping antibiotic resistance in natural 
environments can help predict and prevent the 
emergence of resistance and its possible harmful effects 
in the future. 

This study focused on Beymelek Lagoon, situated 
in the Demre district of Antalya province, Turkey, as the 
research site. The investigation aimed to detect 
antibiotic resistance genes in bacteria isolated from 
water samples collected at five distinct locations within 
the lagoon during two different periods. Environmental 
parameters, including temperature, pH, and salinity, 
were measured at each sampling point. Notably, the 
bacterial isolates and identified antibiotic resistance 
genes were analyzed in relation to temperature data, 
allowing for a comparative assessment of the findings. 

 

Materials and Methods 
 

Sample Collection 
 

Water samples were collected considering the 
limnological characteristics of the lagoon, at a depth of 
15 cm from the surface, during two distinct periods. To 
ensure reliable microbial profiling, three 100 mL water 
samples were obtained from each sampling site. Among 
the sampling points, Point 1 was specifically selected 
due to its proximity to the brackish water inflow that 
feeds the lagoon, Point 2 was near the highway, and 
Point 3 represented the connection point to the sea 
(Figure 1). 

The sampling periods, February and August, were 
chosen based on data from the Mediterranean Fisheries 
Research, Production, and Training Institute, as these 
months represent the lowest and highest average 
lagoon water temperatures, respectively. During 
sampling, water temperature, salinity, and pH levels 
were measured and recorded. Water samples were 
collected in sterile, disposable 100 mL plastic containers 
and transported to the microbiology laboratory under 
cold chain conditions within a short time frame. The 
samples were maintained at +4°C in a cooler until 
bacteriological analysis was performed. 
 
Isolation and Identification of Bacteria 
 

The primary water sample was utilized for bacterial 
isolation, while two additional samples were preserved 

 

Figure 1. Beymelek Lagoon.  
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at +4°C as backups. As the primary sample provided 
sufficient bacterial growth, the preserved samples were 
not processed further. Each 100 mL sample was 
vortexed, and 1 mL was taken from the midpoint of the 
water column in the container and transferred to a glass 
tube containing 9 mL of sterile physiological saline. After 
vortexing the sample in the tube, 1 mL was transferred 
to the second dilution tube. Serial dilutions continued 
until the fifth dilution tube. 

From each dilution tube, 0.1 mL of the sample was 
spread, in triplicate, onto Marine Agar (MA) plates. MA 
is an effective nutrient medium for marine bacteria, 
supporting the isolation, cultivation, and maintenance 
of diverse heterotrophic marine bacterial species. In this 
study, MA was the primary medium used for these 
purposes (Nikolakopoulou et al., 2008; Rodrigues & de 
Carvalho, 2022). The plates were incubated for four days 
at 18°C for February samples and 29°C for August 
samples. 

After incubation, morphologically distinct colonies 
were selected and subcultured. A loopful of colonies 
grown on MA was evaluated for catalase and oxidase 
activity, and Gram staining was performed on clean 
slides (Arda, 2006). Furthermore, bacteria initially 
cultured on MA were transferred to Trypticase Soy Agar 
(TSA) and Brain Heart Infusion Agar (BHIA) to determine 
their ability to grow on routine media. 

Pure colonies were inoculated into Marine Broth 
(MB) medium. Subsequently, MB with 20% glycerin 

(Tendencia & De La Peña, 2001) was used for long-term 
storage in 5 mL screw-capped DNase- and RNase-free 
cryotubes at -20°C. Bacterial species identification was 
performed using the VITEK2 Compact automatic ID/AST 
system (Biomerieux) at the Konya Veterinary Control 
Institute Microbiology Laboratory. 
 
Detection of the Antibiotic Resistance Genes 
 

In this study, the colony PCR method was 
employed to obtain genetic material for detecting 
resistance genes (Packeiser et al., 2013; Sebastião et al., 
2015). Briefly, bacterial colonies approximately 2 mm in 
diameter were collected using disposable sterile loops 
and transferred into 1.5 mL Eppendorf tubes containing 
500 µL of sterile distilled water. The bacterial cells were 
suspended by vortexing for 2 minutes. 

Following suspension, the mixture was heated at 
100°C for 10 minutes to lyse the cells. The genetic 
material released by cell wall disruption was 
subsequently isolated by centrifuging the tubes at 2500 
rpm for 10 seconds in a microcentrifuge. The 
supernatant containing the DNA was collected and used 
as a template for the PCR process (Woodman et al., 
2016). 

The primers used in this study are listed in Table 1 
and were synthesized accordingly. The target genes 
included aadA1 (aminoglycoside resistance), ampC and 
blaTEM (beta-lactam resistance), cfr (amphenicol 

Table 1. Primer pairs used in this study  
  Primers Sequence Ta (oC) Size (bp) References 

aadA1 
aadA1-FW TATCCAGCTAAGCGCGAACT 

58 447 (San Martín et al., 2008) 
aadA1-RV ATTTGCCGACTACCTTGGTC 

ampC 
ampC-FW CCTCTTGCTCCACATTTGCT 

58 189 
(Yang et al., 2012) 

ampC-RV ACAACGTTTGCTGTGTGACG 

blaTEM 
blaTEM-FW CATTTTCGTGTCGCCCTTAT 

58 167 
blaTEM-RV GGGCGAAAACTCTCAAGGAT 

cfr 
cfr-FW TGTGCTACAGGCAACATTGGAT 

55 148 (He et al., 2016) 
cfr-RV CAAATACTTGACGGTTGGCTAGAG 

dfrA1 
dfrA1-FW GGAATGGCCCTGATATTCCA 

55 95 (Johnson et al., 2016) 
dfrA1-RV AGTCTTGCGTCCAACCAACAG 

ermB 
ermB-FW CATGCGTCTGACATCTATCTGA 

56.8 190 (Xu et al., 2017) 
ermB-RV CTGTGGTATGGCGGGTAAGTT 

floR 
floR-FW CGGTCGGTATTGTCTTCACG 

56 171 (Li et al., 2013) 
floR-RV TCACGGGCCACGCTGTAT 

intI1 
intI1-FW GGCTTCGTGATGCCTGCTT 

57 146 (Luo et al., 2010) 
intI1-RV CATTCCTGGCCGTGGTTCT 

mphA 
mphA-FW GCAGGCGATTCTTGAGCATT 

57 214 (Dang et al., 2017) 
mphA-RV GCCGATACCTCCCAACTGTA 

qnrA1 
qnrA-FW ATTTCTCACGCCAGGATTTG 

53 516 (Robicsek et al., 2006) 
qnrA-RW GATCGGCAAAGGTTAGGTCA 

sul1 
sul1-FW CGCACCGGAAACATCGCTGCAC 

55.9 163 
(Pei et al., 2006) 

sul1-RV TGAAGTTCCGCCGCAAGGCTCG 

sul2 
sul2-FW TCCGGTGGAGGCCGGTATCTGG 

60.8 191 
sul2-RV CGGGAATGCCATCTGCCTTGAG 

sul3 
sul3-FW CCCATACCCGGATCAAGAATAA 

57 143 (Luo et al., 2010) 
sul3-RV CAGCGAATTGGTGCAGCTACTA 

tetA 
tetA-FW GCTACATCCTGCTTGCCTTC 

60 210 (Tamminen et al., 2011) 
tetA-RV CATAGATCGCCGTGAAGAGG 

tetB 
tetB-FW CGAAGTAGGGGTTGAGACGC 

56 192 (Luo et al., 2010) 
tetB-RV AGACCAAGACCCGCTAATGAA 

tetW 
tetW-FW GAGAGCCTGCTATATGCCAGC 

60 168 (Xu et al., 2017) 
tetW-RV GGGCGTATCCACAATGTTAAC 
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resistance), dfrA1 (trimethoprim resistance), ermB 
(macrolide resistance), floR (amphenicol resistance), 
Class 1 integron integrase (IntI1), mphA (macrolide 
resistance), qnrA1 (quinolone resistance), sul1, sul2, 
sul3 (sulfonamide resistance), and tetA, tetB, tetW 
(tetracycline resistance). 

PCR was performed using Qiagen Master Mix 
(Qiagen 201445) following the manufacturer’s 
instructions. Amplification was carried out with an initial 
denaturation at 94°C for 5 minutes, followed by 35 
cycles of denaturation at 94°C for 30 seconds, annealing 
at 50–60°C for 30 seconds, and extension at 72°C for 1 
minute. A final extension step was conducted at 72°C for 
5 minutes (Bergkessel & Guthrie, 2013). 

All PCR products were analyzed via 2% agarose gel 
electrophoresis at 80 V for 45 minutes. The gels were 
stained with 10% ethidium bromide and visualized 
under ultraviolet (UV) light. 
 

Results 
 

Temperature and salinity values for the regions 
where water samples were collected in February and 
August are presented in Table 2. In February, the region 
with the lowest water temperature was No: 3, 
measuring 16.0°C, while the highest water temperature 
was observed at No: 4, measuring 17.2°C. Salinity values 
in February were lowest at the Region No: 1 and highest 
at No: 2. 

In August, the region with the lowest water 
temperature was No: 1 at 25.5°C, whereas the highest 
temperature was recorded at No: 4, reaching 29.5°C. 
Salinity values in August were lowest at the Region No: 
1 and highest at No: 3. 

A total of 28 bacterial strains were isolated from 
lagoon water samples. From the samples collected in 
February, seven Gram-negative and nine Gram-positive 
strains were isolated, while nine Gram-negative and 
three Gram-positive strains were isolated from the 
samples collected in August. The isolates were identified 
using the VITEK2 Compact automatic identification 
system. The results of the VITEK2 biochemical tests for 
Gram-negative and Gram-positive bacteria are 
presented in Tables 3 and 4, respectively. The resistance 
gene profiles of the identified bacteria are provided in 
Table 5. 

The data on antibiotic resistance genes present in 
the bacterial strains isolated in this study are presented 
in Table 3. Among the isolates, blaTEM was the most 

commonly detected antibiotic resistance gene. The 
detection rates of resistance genes in the isolated 
bacteria were as follows: 42.86% for blaTEM, 7.14% for 
ermB, 25% for intI1, 3.57% for sul1, 3.57% for sul2, and 
7.14% for tetW. However, some antibiotic resistance 
genes, including aadA1, ampC, cfr, dfrA1, floR, mphA, 
qnrA1, sul3, tetA, and tetB, were not detected in any of 
the 28 isolates. 

The distribution of resistance genes among the 
bacterial isolates, categorized by the period of isolation, 
is illustrated in Figure 2. Gel electrophoresis images of 
bacterial strains that tested positive for antibiotic 
resistance genes are shown in Figures 3 through 8. 
 

Discussion 
 

Coastal lagoons are known to constitute 
approximately 13% of the world's coastlines (Barnes, 
1980). The changes occurring in lagoon areas, which are 
more sensitive than other marine environments, are 
crucial for environmental, animal, and public health. 
Antimicrobial resistance genes detected in these 
ecosystems serve as indicators of pollution resulting 
from human activities and have been described as 
environmental pollutants due to their presence in these 
areas (Altuğ et al., 2013; Rysz & Alvarez, 2004). 

The detection of resistance genes such as intI, sul1, 
tetW, and blaTEM in natural environments is widely 
accepted as an indicator of environmental antimicrobial 
resistance (Nappier et al., 2020). The abundance of 
integrons in bacterial communities within aquatic 
habitats is known to reflect the degree of pollution in 
water bodies (Lupo et al., 2012). The sul1 gene, which is 
a strong indicator of horizontal gene transfer and 
multiple resistance, is commonly found in 
environmental and clinical bacterial populations, often 
within class 1 integrons on conjugative plasmids that 
also harbor other resistance genes. Studies have shown 
that the tetW gene confers resistance to tetracycline 
and is frequently found in aquaculture environments 
(Blanco-Picazo et al., 2020; Jian et al., 2021; Roberts, 
2002, Sköld, 2000). 

The presence of antibiotic resistance genes such as 
intI, sul1, tetW, and blaTEM in the present study 
underscores the importance of these genes as pollution 
indicators. Notably, the detection of the blaTEM gene in 
bacteria containing the sul1 gene aligns with the 
expression of multiple resistance traits. 

Table 2. Water parameters during sampling times  
 

February 
 

August 

Region Temperature Salinity (%) pH  Temperature Salinity (%) pH 

No:1 16.2 1.80 7.82  25.5 2.15 7.70 
No:2 16.8 2.41 7.94  28.5 2.58 7.85 
No:3 16.0 2.25 7.99  29.4 2.78 7.89 
No:4 17.2 2.35 7.91  29.5 2.76 7.86 
No:5 16.5 2.33 7.94  28.3 2.74 7.89 
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Table 3. VITEK 2 biochemical test results of Gram-negative bacteria  
 1 6 8 10 12 14 15 18 19 21 22 23 24 25 27 28 

APPA + - - + - - + - - - + - + + + - 
H2S - - - - - - - - - - - - - - - - 
BGLU + - - - - - + - - - - - - - - - 
ProA + + + + + - + + + - + + + + + - 
SAC - - - - - - - - - - + - - + + - 
ILATk - - - - + + + + - + + + - - - + 
GlyA - - - - - - - - - - + - + - + - 
O129R - - - - + + - + - + + + - - - + 
ADO - - - - - - - - - - - - - - + - 
BNAG - - - - - - - - - - + - - - + - 
dMAL - - - - + + + + - + + - - + + + 
LIP - - - - + - - - - - - - - - - - 
dTAG - - - - - - - - - - - - - - - - 
AGLU + - + + - - - - - - - - - - - - 
ODC - - - - + - - - - - - - - - - - 
GGAA - - - - - - - - - - + - + + + - 
PyrA - - - - - - + - - - + - - + + - 
AGLTp - - - - - + - - - - - - - - - - 
dMAN - - - - + + - - - - + - - - - - 
PLE - - - - - - - - - - - - - - - - 
dTRE - - - - + + + + - + + - - + + + 
SUCT - - - - + + - + - + + + - - - + 
LDC - - - - + - - - - - - - - - - - 
IMLTa - + + + + - - + - - + + - + - - 
IARL - - - - - - - - - - - - - - - - 
dGLU - + + - + + + + - + + + + + + + 
dMNE - - - - + + + + - - + + - + + + 
TyrA - + + + + + + + - + + + + - + + 
CIT - - - - + - - + - - - + - - - - 
NAGA - - - - - - - - - - - - - - - - 
IHISa - - - - - - - - - - + - - - - - 
ELLM + - - - - - - - - - - - - - - - 
dCEL - - - - - - - - - - - - - - - - 
GGT - + + + + - - + - - - + - - - - 
BXYL - - - - - - - - - - - - - - - - 
URE - + + - - + + - - + - - + - - + 
MNT - + + - + - - + - - - + - - - - 
AGAL - - - - - - - - - - - - - - - - 
CMT - - - - + + + + - + + + + + + + 
ILATa - + - + + - - + - - + + - - - - 
BGAL - - - - + + - + - + + + - - - + 
OFF - - - - + + - + - + + - - - - + 
BAlap - - - - - - - - - - - - - - - - 
dSOR - - - - - + - - - - + - - - - - 
5KG - - - - - - - - - - - - - - - - 
PHOS + - - - - - - - + - + - + + + - 
BGUR - - - - - - - - - - - - - - - - 

 

 
human and animal samples tested positive for the ermB 
resistance gene. In our study, only the blaTEM gene was 
detected in the A. viridans strain isolated from the 
Region No:1 in February. 

Beach et al. (2012) conducted an antibiogram test 
on a Bordetella hinzii strain isolated from sick turkeys 
and found that the strain was resistant to cefotaxime 
and tobramycin, moderately sensitive to ampicillin and 
chloramphenicol, and fully sensitive to tetracycline, 
sulfamethoxazole/trimethoprim, and ciprofloxacin. In 
our study, the B. hinzii strain isolated from the Region 
No:2 in August tested negative for other resistance 
genes but showed a positive reaction for the blaTEM 
gene. 

In a study conducted by Capkin et al. (2015) on 
trout and the environments in which they were raised, 
P. luteola was isolated from the internal organs of the 

Most culture-based studies of aquatic bacterial 
communities typically focus on fecal-derived bacteria or 
well-known human pathogens. However, every 
bacterium in an ecosystem can act as both a reservoir 
and a vector for the spread of resistance genes (Almakki 
et al., 2017). In a study conducted by Gholami (2012) in 
Karataş Lagoon, bacteria such as Sphingomonas 
paucimobilis, Vibrio parahaemolyticus, Pseudomonas 
stutzeri, and Vibrio alginolyticus were isolated from 
lagoon water samples collected over two different 
periods. Similarly, Gürün (2014) isolated bacteria 
including E. coli, Sphingomonas paucimobilis, Myroides 
sp., Micrococcus luteus, and Kocuria kristinae from 
seawater in Güllük Bay. 

Aerococcus viridans is frequently encountered as a 
human pathogen (Pien et al., 1984). In a study by Buu-
Hoi et al. (1989), strains of A. viridans isolated from 
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Table 4. VITEK 2 biochemical test results of Gram-positive bacteria  

 2 3 4 5 7 9 11 13 16 17 20 26 

AMY - - - - - - - - - - - - 
APPA - - - - - + - - - - - - 
LeuA + - + - - + + + + + + + 
AlaA + - + - + + + + + + + + 
dRIB - - - - + - - - - - - - 
NOVO - - - - + - - - - - - - 
dRAF - - - - + - - - - - - - 
OPTO - - - - + - - - - - - - 
PIPLC - - - - - - - - - - - - 
CDEX - - - - - - - - - - - - 
ProA + - + - - + + + - - + - 
TyrA + + + - + + + + + + + + 
ILATk - - + - + + - + - - - - 
NC6.5 - - - - - - - - - - - - 
O129R - - - - + - - - - - - - 
dXYL - + - - + - - - - - - - 
AspA - - - - - - - - - - - - 
BGURr - - - - - - - - - - - - 
dSOR - - - + + - - - - - - - 
LAC - - - - + - - - - - - - 
dMAN - + + + + - - - - - + - 
SAL - - - - - - - - - - - - 
ADH1 + - + - + + + + + + + - 
BGAR - - - - + - - - - - - - 
AGAL + - - - + - - - - - + - 
URE - - - - - + - - - - - - 
NAG - + - + + - - - - - - - 
dMNE - + - - + - - - - - - - 
SAC - - + + + - - - - - - - 
BGAL + - - + - - - - - - + - 
AMAN - - - - - - - - - - - - 
PyrA + + - + - - + - + + - - 
POLYB - - - - - - - - - - - - 
dMAL - - - - + - - - - - - - 
MBdG - - - - - - - - - - - - 
dTRE - - - + + - - - - - - - 
AGLU + - + + + + + + + + + - 
PHOS - - - - - - - - - - - - 
BGUR - - - - - - - - - - - - 
dGAL - - - - + - - - - - - - 
BACI - - - - + - - - - - - - 
PUL - - - - - - - - - - - - 
ADH2s - - - - - - - - - - - - 

 

fish, while E. coli and other coliforms were detected in 
water samples. The tetB, sul2, ampC, and blaTEM genes 
were found in P. luteola strains, while tetA, tetB, sul1, 
sul2, ampC, aadA, and blaTEM genes were found in 
varying amounts in the E. coli isolates. In our study, one 
of the three P. luteola strains isolated from water 
samples collected in August tested positive for blaTEM 
and tetW, another tested positive for blaTEM and intI1, 
and the third tested positive only for the blaTEM gene. 
Additionally, only the blaTEM gene was detected in the 
E. coli strain isolated from water samples taken from the 
Region No: 4 in February. 

Enterococcus columbae is a type of enterococcus 
first described in pigeons (Devriese et al., 1990). It has 
been reported that bacteria isolated from pigeons may 
exhibit high resistance to antibiotics (Osman et al., 2019; 
Stenzel et al., 2014). Dolka et al. (2020) investigated the 
antibiotic resistance profiles of 50 E. columbae strains 
isolated from the cloaca of pigeons across various 
regions of Poland at different times. Their findings 

revealed that 44 of these strains were resistant to 
enrofloxacin, 39 to doxycycline, 33 to erythromycin, 11 
to chloramphenicol, and seven to tetracycline. One 
strain was resistant to penicillin, while all strains were 
found to be susceptible to ampicillin and 
amoxicillin/clavulanic acid. In our study, it was 
determined that the E. columbae strain isolated from 
water samples collected from the Region No: 2 in 
February contained both blaTEM and tetW resistance 
genes. 

Hafnia alvei is a bacterial species that has been 
isolated from a diverse range of organisms and 
environments, including mammals, birds, reptiles, fish, 
soil, water, and sewage. It is infrequently recognized as 
an opportunistic pathogen and is typically not 
considered directly associated with humans (Janda & 
Abbott, 2006; Okada & Gordon, 2003). Castello et al. 
(2023) reported that among the two H. alvei strains 
isolated from fresh vegetable products in their study, 
one exhibited a positive reaction for the blaTEM gene 
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Table 5. Identified bacteria and their resistance profiles (Pink: Gram-negative, Blue: Gram-positive) 
 No Region Bacteria aadA1 ampC bla TEM cfr dfr A1 ermB floR intI1 mphA qnrA1 sul 1 sul 2 sul 3 tetA tetB tetW 

Fe
b

ru
ar

y 

1 No:1 Sphingomonas paucimobilis                                 

2 No:1 Micrococcus luteus                                 

3 No:1 Staphylococcus lentus                                 

4 No:1 Kocuria kristinae                                 

5 No:1 Aerococcus viridans                                 

6 No:1 Pseudomonas stutzeri                                 

7 No:2 Enterococcus columbae                                 

8 No:2 Pseudomonas stutzeri                                 

9 No:2 Micrococcus luteus                                 

10 No:3 Pseudomonas stutzeri                                 

11 No:3 Micrococcus luteus                                 

12 No:4 Hafnia alvei                                 

13 No:4 Micrococcus luteus                                 

14 No:4 E. coli                                 

15 No:5 Sphingomonas paucimobilis                                 

16 No:5 Kocuria rhizophila                                 

A
u

gu
st

 

17 No:1 Kocuria rhizophila                                 
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 Figure 2. Distribution of bacteria according to antibiotic resistance genes. 
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but tested negative for tetA, tetB, tetW, sul2, and sul3, 
while the other strain tested negative for all these 
genes. In our study, the H. alvei strain isolated from the 
Region No: 4 in February demonstrated positive 
reactions for the blaTEM, ermB, and sul2 genes, 
highlighting the potential role of H. alvei as a significant 
indicator of multidrug resistance. 

Pękala et al. (2018) isolated Kocuria rhizophila and 
Micrococcus luteus from the internal organs of two 
different trout species exhibiting disease symptoms in 
Poland. Using the disk diffusion method, they found that 

Kocuria and Micrococcus strains were resistant to 
flumequine, oxolinic acid, and sulfonamides, but 
sensitive to β-lactams, macrolides, amphenicols, and 
tetracyclines. In our study, all resistance genes tested 
negative in the K. rhizophila strains. The intI1 gene was 
detected in only one M. luteus strain isolated in August. 

Marques et al. (2023) observed that Kocuria 
kristinae, isolated from a boa constrictor, was resistant 
to sulfamethoxazole/trimethoprim, tetracycline, and 
erythromycin but sensitive to gentamicin. However, no 
resistance genes were detected in the K. kristinae strains 
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Figure 3. Electrophoresis of blaTem gene (M: Marker 100 bp, blaTem: 167 bp). 

 

 

Figure 4. Electrophoresis of ermB gene (M: Marker 100 bp, ermB: 190 bp). 

 

 

Figure 5. Electrophoresis of intI1 gene (M: Marker 100 bp, intI1: 146 bp). 
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Figure 6. Electrophoresis of sul1 gene (M: Marker 100 bp, sul1: 163 bp).  

 

 

Figure 7. Electrophoresis of sul2 gene (M: Marker 100 bp, sul2: 191 bp). 

 

 

Figure 8. Electrophoresis of tetW gene (M: Marker 100 bp, tetW: 168 bp).  
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isolated from the samples collected from the Region No: 
1 in February. Although K. rosea is typically associated 
with human disease cases, studies have shown that it 
can also be isolated from environmental sources (Akbari 
et al., 2021; Timkina et al., 2022). In our study, the K. 
rosea strain isolated from water samples tested positive 
for the intI1 gene; however, no resistance genes were 
identified. 

Studies have demonstrated that species within the 
Myroides genus are commonly isolated from seafood 
and environmental sources such as water and soil 
(Licker et al., 2018; Z. D. Zhang et al., 2014). In a clinical 
study, Myroides species were reported to harbor the 
sul2 and sul3 genes (Ming et al., 2017). In our study, a 
Myroides sp. strain was isolated from samples collected 
from the Region No: 3 in August, and the intI1 gene was 
detected in this strain. 

Luczkiewicz et al. (2015) reported that the 
dominant species among the Pseudomonas strains 
isolated from wastewater facility samples was P. putida. 
Antibiogram testing revealed that this bacterium 
exhibited resistance to various antibiotics, including 
gentamicin, ciprofloxacin, and piperacillin. It was 
suggested that P. putida could serve as a potential 
receptor and reservoir for antimicrobial resistance 
genes. In our study, the blaTEM and intI1 genes were 
detected in the P. putida strain isolated from the Region 
No: 3 in August. Z. Wang et al. (2023) isolated P. stutzeri 
from an industrial wastewater environment and 
reported that the qnrA and sul2 genes were present in 
the strains they examined. Among the three P. stutzeri 
strains isolated from water samples in February in our 
study, one strain tested positive for the blaTEM gene, 
while another was positive for both the blaTEM and 
ermB genes. The third strain tested negative for all the 
resistance genes analyzed. 

Ferri et al. (2023) isolated Staphylococcus lentus 
and Sphingomonas paucimobilis from processed 
seafood and associated environments. They identified 
the ermB, cfr, sul1, and sul3 genes in S. lentus and the 
blaTEM gene in S. paucimobilis. In our study, no 
resistance genes were detected in the S. lentus strain 
isolated from samples collected from the Region No: 1 
in February. Among the two S. paucimobilis strains 
isolated in February, one tested negative for all genes, 
while the other was positive for both the blaTEM and 
sul1 genes. 

Vibrio alginolyticus is a marine bacterium 
frequently associated with diseases in various marine 
organisms, while Vibrio parahaemolyticus is a significant 
cause of acute gastroenteritis, wound infections, and 
sepsis in coastal regions worldwide (F. Zhang et al., 
2024). Håkonsholm et al. (2020) detected ampC, bla, 
qnr, and tet genes in 53 V. alginolyticus strains isolated 
from water samples in the Norwegian Sea. Beshiru & 
Igbinosa (2023) investigated 67 V. parahaemolyticus 
strains from ready-to-eat foods in Nigeria, reporting 
resistance gene distributions as follows: 49.3% for 
blaTEM, 8.9% for aadA, 16.4% for tetA, 11.9% for tetB 

and dfrA, 20.9% for sul1, 8.9% for sul2, 13.4% for qnrA, 
and 16.4% for intI1. In our study, one V. 
parahaemolyticus and two V. alginolyticus strains were 
isolated from water samples collected in August. The V. 
parahaemolyticus strain and one of the V. alginolyticus 
strains tested positive for the intI1 gene, while no 
resistance genes were detected in the other V. 
alginolyticus strain. 

Our findings reveal that most bacterial species and 
resistance genes identified in this study align with those 
reported in prior research, though some variations were 
observed. These discrepancies may be attributed to the 
unique environmental conditions and sampling 
locations. Furthermore, differences in resistance genes 
could be explained by the ability of bacteria to utilize 
horizontal gene transfer mechanisms, interactions 
within bacterial communities, and exposure to 
environmental factors that drive the development of 
resistance. 
 

Conclusion 
 

In our study, water samples collected from the 
Beymelek Lagoon during two different periods were 
analyzed for antibiotic-resistant bacteria and the 
resistance genes they carry. The lower number of 
bacteria isolated from water samples in August 
compared to February is thought to result from 
increased water temperature and salinity levels. 
However, in terms of resistance genes, bacteria isolated 
from August samples were found to carry more 
resistance genes than those from February. This finding 
aligns with the idea that salinity and temperature are 
significant factors influencing the resistance of aquatic 
bacterial communities to antimicrobial agents (Almakki 
et al., 2017). 

The data obtained in this study were compared 
with findings from previous research conducted in 
various regions worldwide. Within the framework of the 
"One Health" concept, this study reinforces the idea that 
the interconnectedness of the environment, animal 
health, and human health should be considered a 
common denominator in addressing the development 
of antimicrobial resistance. Regular monitoring of these 
factors is essential to combat this global challenge 
effectively.   
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