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Abstract 
 
Here we report the mitogenome of Potamon fluviatile collected from the Maltese 
islands, representing the first such study on species from the subfamily Potaminae. 
The mitogenome was analysed through next-generation sequencing and annotated. 
The genome was found to contain 37 genes that include 13 protein coding genes, 22 
tRNA genes, two rRNA genes and a non-coding region. The gene order was compared 
to that of other Potamidae species, while protein coding and rRNA genes were used to 
evaluate the phylogenetic position of Potamon with other species of freshwater crabs. 
The phylogenetic analysis shows that the subfamily Potaminae, here represented by 
P. fluviatile, forms a distinct clade from its sister subfamily Potamiscinae, with the two 
sharing common ancestry within the family Potamidae. This study contributes to the 
genetic resources available for the genus Potamon.  

 

Introduction 
 

Potamon fluviatile (Herbst, 1785), is a primary 
freshwater crab that is found to occur in the southern 
European continent, in a number of 
hydrogeographically isolated freshwater bodies in Italy; 
the Balkan Peninsula; the Turkish Thrace region; and 
some neighbouring islands, including the Maltese 
Islands (Cumberlidge, 2008; Ng et al., 2008; Jesse et al., 
2009; Harlıoğlu, Farhadi & Harlıoğlu, 2018). 
Consequently, this species even though widespread, its 
distribution is highly fragmented even on small-scale 
given that it is restricted to fresh watercourses (Vella & 
Vella, 2020). Additionally, it is highly threatened by 
anthropogenic activities mainly because of the 
pressures imposed on freshwater bodies including 
pollution, pesticides, alien species and water usage 
(Barbaresi, Cannicci, Vannini & Fratini, 2007; 

Cumberlidge et al., 2009; Freyhof & Brooks, 2011; Vella, 
Vella & Mifsud, 2017, Gozlan, Karimov, Zadereev, 
Kuznetsova & Brucet, 2019; Grzybowski & Glińska-
Lewczuk, 2019). These threats have led IUCN to enlist 
this species as Nearly Threatened on a global scale with 
populations showing negative trends (Cumberlidge, 
2008, Cumberlidge et al., 2009). In the Maltese 
archipelago, this is the only species of freshwater crabs 
and is locally protected, while it is considered as a 
flagship species for freshwater habitats and also for 
invertebrates as P. fluvitale is considered as the national 
invertebrate (Laws of Malta, 2021). 

Potamon fluviatile is a member of the family 
Potamidae Ortmann, 1896. The latter is a large family of 
primary freshwater crabs containing two subfamilies, 
Potaminae Ortmann, 1896 and Potamiscinae Bott, 1970 
(Ng et al., 2008). In the past few years, attention has 
been given to the taxonomy and systematics of this 
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family due to its conservation value and high species 
diversity, with works leading to the discovery of new 
species (Daniels et al., 2006; Ng et al., 2008; Yeo et al., 
2008; Shih, Yeo & Ng, 2009; Leelawathanagoon, 
Lheknim & Ng, 2010). Huang, Shih & Mao, 2016; Naruse, 
Chia & Zhou, 2018; Zou, Bai & Zhou, 2018; Gao et al., 
2019; Wang, Zhou & Zou, 2019; Wang, Zhou & Zou, 
2020; Tan, Zhou & Zou, 2021). In 2008, a checklist of the 
subfamily Potaminae enlisted 34 species (Ng et al., 
2008), with the genus Potamon being its largest genus 
with 17 species, and since then a new species has been 
described by Jesse et al., (2010). While some of these 
species, including P. fluviatile, have been DNA barcoded 
for systematic studies or included in population studies 
(Jesse et al., 2009; Jesse et al., 2010; Jesse et al., 2011; 
Vella and Vella, 2020), yet data on Potamidae 
mitochondrial genomes is limited to the subfamily 
Potamiscinae, while none from the subfamily Potaminae 
have ever been studied for the complete set of 
mitochondrial genes and gene order.  

In Potamiscinae the mitogenomes range from 
15,318 bp in Nanhaipotamon hongkongense (Wang et 
al., 2020), to at least 20,227 bp in the incomplete 
mitogenome of Parapotamon spinescens (Zhang et al., 
2020) (Table 1). Some of these Potamiscinae 

mitogenomes exhibit different gene arrangements, 
including tandem duplication or random loss events in 
non-coding sequences, single gene duplication, tRNA 
remolding, transposition and inversion transposition of 
genes, leading to at least nine distinct mitogenomic 
gene order patterns, with eight of them deviating from 
the typical brancyuran mitogenome ground pattern 
(Zhang et al. 2020). These interesting variations in the 
mitogenomes of Potamiscinae species have led to better 
understand the evolutionary history of different 
freshwater crabs at subfamily level (Zhang et al. 2020), 
yet the absence of studies on Potaminae limits the 
understanding of the phylogenetic relationships within 
the family Potamidae.  

The current study uses the mitochondrial genome 
sequence to elucidate its organization, gene order and 
codon usage in P. fluviatile and at the same time 
compare it with that of other freshwater crabs. This 
phylogenetic contribution is essential as it uses a large 
set of genes to investigate the systematic position and 
the taxonomic relationship between the two subfamilies 
within Potamidae, that is Potaminae and Potamiscinae, 
adding knowledge on the systematics of primary 
freshwater crabs. 

 

Table 1. The mitogenome composition of different Potamidae species. 

Species GenBank Mitogenome 
length bp (GC%) 

Protein-coding 
genes length bp 

(GC%) 

Ribosomal 
RNA genes 
length bp 

(GC%) 

Reference 

Potaminae      
  Potamon fluviatile OL944387 16,037 (26.6)* 11,174 (28.6) 2,120 (22.2) current work 
Potamiscinae      
  Aparapotamon similium MK950854 19,236 (27.2) 11,145 (30.2) 2,146 (25.3) Lie et al., 2019 
  Apotamonautes hainanensis MN737137 17,011 (26.6) 11,158 (28.0) 2,236 (22.8) Zhang et al., 2020 
  Bottapotamon lingchuanense MN117717 17,612 (27.7) 11,186 (30.4) 2,146 (25.4) Wang et al., 2021 
  Candidiopotamon okinawense MN737145 17,211 (27.7) 11,155 (29.9) 2,133 (23.5) Zhang et al., 2020 
  Chinapotamon maolanense MT134100 17,130 (26.6) 11,122 (29.6) 2,143 (23.0) Cui et al., 2020 
  Geothelphusa dehaani AB187570 18,197 (25.1)* 11,137 (28.5) 2,136 (23.2) Segawa et al., 2005 
  Huananpotamon lichuanense KX639824 15,380 (26.8) 11,127 (28.5) 2,144 (22.3) Bai et al., 2018 
  Indochinamon bhumibol MT872370 16,351 (29.7) 11,142 (32.0) 1,893 (26.5) Naktang et al., 2021 
  Longpotamon depressum MW182411 16,537 (26.7) 11,143 (28.8) 2,095 (22.9) Wang et al., 2021 
  Longpotamon exiguum MW182410 17,324 (26.2)* 11,149 (29.1) 2,134 (23.2) Wang et al., 2021 
  Longpotamon kenliense MK584299 18,499 (25.5) 11,170 (29.1) 2,121 (23.3) Wang et al., 2020 
  Longpotamon parvum MN737134 19,637 (26.0) 11,161 (30.5) 2,139 (24.6) Zhang et al., 2020 
  Longpotamon xiushuiense KU042041 18,460 (25.5) 11,172 (29.0) 2,138 (23.0) unpublished 
  Longpotamon yangtsekiense KY785879 17,885 (25.0) 11,155 (28.2) 2,120 (22.7) Yuhui et al., 2017 
  Lophopotamon yenyuanense MN737139 18,869 (27.1) 11,154 (30.3) 2,123 (25.0) Zhang et al., 2020 
  Nanhaipotamon hongkongense MW125541 15,318 (27.3) 11,136 (29.0) 2,122 (23.7) Wang et al., 2021 
  Neilupotamon sinense MN737143 18,894 (32.6) 11,169 (36.0) 2,159 (29.3) Zhang et al., 2020 
  Neilupotamon xinganense MN117718 16,965 (32.9) 11,150 (35.6) 2,156 (28.4) Tan et al., 2020 
  Parapotamon spinescens MN737144 20,227 (22.8)* 11,143 (26.8) 2,144 (22.3) Zhang et al., 2020 
  Potamiscus montosus MN737133 16,299 (27.3) 11,148 (29.3) 2,156 (24.1) Zhang et al., 2020 
  Potamiscus motuoensis MN737138 18,257 (28.2) 11,152 (31.3) 2,126 (25.7) Zhang et al., 2020 
  Potamiscus yiwuensis MN737136 16,307 (27.4) 11,148 (29.4) 2,157 (24.2) Zhang et al., 2020 
  Potamiscus yongshengensis MN737142 17,821 (29.4) 11,148 (32.0) 2,130 (25.7) Zhang et al., 2020 
  Sinolapotamon patellifer MK883709 16,547 (23.6) 11,142 (25.6) 2,196 (21.3) Ji et al., 2019 
  Sinopotamon yaanense KY785880 17,126 (26.6) 11,151 (29.3) 2,120 (23.8) Yuhui et al., 2017 
  Tenuilapotamon latilum MN737132 19,582 (26.6)* 11,158 (30.3) 2,140 (24.5) Zhang et al., 2020 
  Tenuipotamon yuxiense MN737140 18,404 (28.9) 11,145 (31.7) 2,125 (26.0) Zhang et al., 2020 
  Terrapotamon thungwa MW697087 16,156 (26.8) 11,136 (28.6) 2,132 (23.5) unpublished 

   mean values 
 
 

17,561±1299 
(27.1±2.1) 

11,151±14 
(30.1±2.2) 

2,132±53 
(24.2±1.8) 

 

* mitogenome contains a gap or was not circularized due to a gap in the sequence. 
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Materials and Methods 
 

Sample Collection and DNA Extraction 
 

A specimen of P. fluviatile collected from the 
freshwater stream at Baħrija valley (35°53'40.40"N, 
14°20'20.11"E) was tissue sampled for this study. This 
live specimen was sampled through the collection of one 
walking leg as indicated in Permit NP 0176/18/33A and 
has already contributed towards a population study on 
this species in the Maltese archipelago (Vella and Vella, 
2020). Upon collection the tissue sample was stored in 
100% ethanol and soon after the total genomic DNA was 
extracted using GF-1 Tissue DNA Extraction Kit (Vivantis 
Technologies, Malaysia) following the manufacturer’s 
manual. The purified DNA was stored at −20°C.  

 
Library Construction, Mitogenome Assembly and 
Annotation 
 

A DNA library of the whole genome was 
constructed and sequenced using 2 × 150 bp paired-end 
sequencing through Illumina HiSeq 2500 (Illumina, USA). 
DNA sequences were paired, trimmed at ≥ Q40, and 
reads shorter than 100 nucleotides were discarded. The 
final data set was de novo assembled using Geneious 
R10 (Kearse et al., 2012). Once the mitogenome was 
obtained, the PCGs were identified through homology 
with other Potamidae species obtained from GenBank 
(refer to Table 1). These genes were then translated 
using the invertebrate mitochondrial genetic code and 
checked for the presence of the predicted start codons, 
for the positions of the stop codons, and for possible 
insertions and deletions that would have caused a 
frameshift using Geneious R10 (Kearse et al., 2012). The 
software tRNAscan-SE 2.0 (Chan & Lowe, 2019) and 
ARWEN (Laslett & Canback, 2008) were used to 
determine the genomic position and the secondary 
structure for each tRNA, that were identified through 
their cloverleaf secondary structure and anticodon 
sequence. The annotated mitogenome was then 
validated against published mitogenomes of other 
Potamidae species (refer to Table 1). Nucleotide 
composition statistics, relative synonymous codon 
usage, and analyses of AT-skew and GC-skew were also 
carried out. 

 
Mitogenome Phylogenetic Analysis 
 

The sequence obtained in this study was used to 
investigate the phylogenetic relationships between P. 
fluviatile, other Potamidae species and other freshwater 
crabs from the family Gecarcinucidae, using the 
concatenated data of PCGs and rRNA genes data. Non-
coding sequences and tRNAs were not included during 
this analysis due to their variability arising from tandem 
duplication and random loss events, gene duplication, 
tRNA remolding, transpositions and inversion 
transpositions even between closely related taxa (Zhang 

et al., 2020). Sequences were aligned using ClustalW 
(Thompson et al., 1994), while MEGA v10 (Kumar et al., 
2018) was used to construct a maximum-likelihood 
phylogenetic tree (Figure 1) using 1,000 bootstrap and 
GTR+G+I as it was identified as the best substitution 
model through the same software. 

 

Results 
 

Mitogenome Organization 
 

The whole genome sequencing for P. fluviatile 
produced 7.9 × 107 pair-end reads. After de novo 
assembly, the sequence of the mitochondrial genome 
was achieved with an average coverage of 2,796 
(SD ±276). This mitochondrial genome (GenBank 
accession no. OL944387) was 16,037 bp, and was 
partially incomplete due to the presence of a gap arising 
from tandem repeats in the non-coding region meaning 
that it could not be circularized unambiguously between 
12S rRNA gene and the tRNA-Ile. This work represents 
the first mitochondrial genome for the subfamily 
Potaminae. The overall base composition is 35.8% A, 
16.2% C, 10.3% G and 37.6% T, with a GC content of 
26.6%. As expected the mitogenome contains 37 coding 
genes that is, 2 ribosomal RNA (12S and 16S) genes, 22 
tRNA genes and 13 PCGs. Most of these genes (23) are 
encoded on the H-strand, while the ND5, ND4, ND4L, 
ND1, 8 tRNA genes [Gln, Cys, Tyr, His, Phe, Pro, Leu1, Val] 
and the two rRNA genes are encoded on the L-strand 
(Table 2). 

The AT and GC skews were calculated using 
(A−T)/(A+T) and (G−C)/(G+C) respectively. The overall 
AT skew for the genes was -0.12, indicating a higher T 
content than A content, while the GC skew was 0.06, 
indicating that the G content is only slightly higher than 
C content. The AT and the GC skews of the genes on the 
H-strand was -0.14 for both skews, while for the genes 
on the L-strand the values were -0.10 and 0.31 
respectively. The latter indicates that the genes encoded 
on the L-strand have a high proportion of G content 
when compared to the C content, in fact this GC skew is 
also reflected in the rRNA genes given that both occur 
on the L-strand (Table 2). 

 
Protein‑coding Genes 
 

The mitogenome contains 11,174 bp that code for 
PCGs, which add up to a total of 3,724 amino acids. The 
gene length varies between 1,729 bp for ND5 to 159 bp 
for ATP8. Most of the PCGs begin with ATG except for 
ND5 and ND6 that begin with ATT, and ATP6 and ND3 
that use ATA as the start codon. For these PCGs the most 
common stop codon is TAA, although some use TAG 
(CO3, ND3, ND4) and the incomplete stop codon T— 
(ND5, CYTB). Overlapping nucleotides between PCGs are 
present between: ATP6 and ATP8 genes; between ND4L 
and ND4 genes; and the stop codon of ND6 with CYTB. 
While the longest non-coding intergenic region is 31 bp 
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and occurs between the ND5 and ND4 genes. The most 
commonly used amino acids are Leu (15.5%), Ser (9.8%) 
and Ile (9.3%) (Table 3). The relative synonymous codon 
usage for the PCGs is summarized in Table 3. All PCGs 
have a negative AT skew, except ND1, ND4, ND4L and 
ND5, which are encoded on the L-strand. All genes have 
a negative GC skew, except CO1 for which the GC skew 
value is zero. 

 
Transfer RNAs and Ribosomal RNAs 
 

The tRNAs in P. fluviatile vary in size from 62 bp in 
tRNA-Ala, tRNA-Asn, tRNA-Arg and tRNA-Gly, to 72 bp in 
tRNA-Val (Table 2), with an overall 25.3% GC content, 

0.04 AT-skew and 0.13 GC-skew. The two rRNA genes 
are separated by tRNA-Val gene, and vary in length from 
817 bp for the 12S rRNA to 1,303 bp for the 16S rRNA 
gene. Their overall GC content is 22.2%, with a 0.02 and 
0.30 AT-skew and GC-skew respectively (Table 2).  

 
Phylogenetic Analysis 
 

This analysis shows that Potaminae, here 
represented by the currently sequenced P. fluviatile, is 
clustered within the family Potamidae, and is a sister to 
the subfamily Potamiscinae, a relationship that was 
confirmed with high statistical support. 

Table 2. Characteristics of the Potamon fluviatile mitochondrial genome coding genes. 

Gene 
Position 

(from – to) 
Length 

(bp) 
Start / Stop 

codon 
Amino 
acids 

Anticodon GC% 
AT 

skewa 
GC 

skewb 
IGN Strand 

tRNA-Ile 956 – 1,025 70   GAT 30.0 0.04 0.05  H 
tRNA-Gln 1,025 – 1,093 69   TTG 24.6 -0.04 0.65 -1 L 
tRNA-Met 1,108 – 1,177 70   CAT 30.0 0.02 -0.14 +14 H 
ND2 1,178 – 2,188 1,011 ATG / TAA 336  25.4 -0.19 -0.35 0 H 
tRNA-Trp 2,186 – 2,251 66   TCA 15.2 0.18 -0.20 +3 H 
tRNA-Cys 2,250 – 2,312 63   GCA 27.0 0.04 0.18 -2 L 
tRNA-Tyr 2,313 – 2,376 64   GTA 28.1 -0.09 0.33 0 L 
CO1 2,377 – 3,915 1,539 ATG / TAA 512  33.1 -0.16 0.00 0 H 
tRNA-Leu2 3,911 – 3,976 66   TAA 30.3 0.17 0.20 -5 H 
CO2 3,996 – 4,682 687 ATG / TAA 228  29.5 -0.09 -0.12 +19 H 
tRNA-Lys 4,685 – 4,749 65   TTT 40.0 -0.03 0.00 +2 H 
tRNA-Asp 4,751 – 4,816 66   GTC 21.2 -0.15 0.00 +1 H 
ATP8 4,817 – 4,975 159 ATG / TAA 52  21.4 -0.23 -0.53 0 H 
ATP6 4,972 – 5,643 672 ATA / TAA 223  30.1 -0.16 -0.21 -4 H 
CO3 5,643 – 6,434 792 ATG / TAG 263  33.1 -0.18 -0.10 -1 H 
tRNA-Gly 6,434 – 6,495 62   TCC 25.8 0.09 0.00 -1 H 
ND3 6,493 – 6,849 357 ATA / TAG 118  26.6 -0.15 -0.14 -3 H 
tRNA-Ala 6,849 – 6,910 62   TGC 24.2 0.02 0.20 -1 H 
tRNA-Arg 6,913 – 6,974 62   TCG 29.0 0.00 -0.11 +2 H 
tRNA-Asn 6,945 – 7,036 62   GTT 30.6 0.02 0.16 0 H 
tRNA-Ser1 7,035 – 7,103 69   TCT 24.6 0.08 0.06 -2 H 
tRNA-Glu 7,126 – 7,192 67   TTC 17.6 0.00 0.00 +22 H 
tRNA-His 7,208 – 7,272 65   GTG 24.6 0.06 0.25 +15 L 
tRNA-Phe 7,272 – 7,337 66   GAA 22.7 0.10 0.47 -1 L 
ND5 7,337 – 9,065 1,729 ATT / T–– 576  26.8 -0.14 0.28 -1 L 
ND4 9,097 – 10,437 1,341 ATG / TAG 446  26.0 -0.17 0.32 +31 L 
ND4L 10,431 – 10,733 303 ATG / TAA 100  26.4 -0.23 0.45 -7 L 
tRNA-Thr 10,736 – 10,798 63   TGT 20.6 0.04 0.08 +2 H 
tRNA-Pro 10,799 – 10,863 65   TGG 18.5 0.06 0.50 0 L 
ND6 10,866 – 11,372 507 ATT / TAA 168  25.8 -0.27 -0.36 +2 H 
CYTB 11,372 – 12,506 1,135 ATG / T–– 378  31.5 -0.15 -0.16 -1 H 
tRNA-Ser1 12,507 – 12,570 64   TGA 20.3 0.14 -0.08 0 H 
ND1 12,590 – 13,531 942 GTG / ATT 313  27.2 -0.25 0.29 +19 L 
tRNA-Leu1 13,562 – 13,626 65   TAG 23.1 0.00 0.33 +30 L 
16S rRNA 13,627 – 14,929 1,303    22.1 0.02 0.31 0 L 
tRNA-Val 14,930 – 15,001 72   TAC 27.8 0.08 0.10 0 L 
12S rRNA 15,002 – 15,818 817    22.3 0.03 0.30 0 L 

All genes  14,737    27.4 -0.12 0.06   
Genes H-strand  7,773    29.4 -0.14 -0.14   
Genes L-strand  6,964    25.1 -0.10 0.31   
PCGs  11,174    28.6 -0.17 0.01   
rRNAs  2,120    22.2 0.02 0.30   
tRNAs  1,443    25.3 0.04 0.13   
a (A-T)/(A+T); b (G-C)/(G+C); c Intergenic nucleotides 
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Discussion 
 

The variation in the mitochondrial genome length 
of Potamidae species is mainly driven by variation in the 
sequence length of the relatively long non-coding 
regions, which are at times characterized by tandem 
repeat elements increasing difficulty in circularizing 
sequences unambiguously. On the other hand, coding 
genes vary very little in size from one species to another 
(Table 1), with the coding genes in P. fluviatile being 
within the expected range for Potamidae species (PCGs 
from 11,122 bp to 11,186 bp ; rRNA from 1,893 bp to 
2,236 bp). This mitogenome exhibited 22 tRNA genes, 
that is the typical number of such genes in 
mitogenomes, though it is known that some 
mitogenomes of freshwater crab species, such as 
Sinopotamon parvum, Tenuilapotamon latilum and 
Geothelphusa dehaeni have undergone events such as 
gene duplication and possible tRNA remolding leading 
to a larger number of tRNAs (Zhang et al., 2020).  

The gene order in the mitogenome of P. fluviatile 
did not show any deviation from the putative ancestral 
gene order identified as brancyuran mitogenome 
ground pattern in Zhang et al., (2020). While this pattern 
is likely to have occurred in the common ancestor the 
subfamily Potamiscinae as it is the most common gene 
order in this subfamily, yet a number of potamiscine 
species deviate from it by having different gene order 
rearrangements namely due to transposition, inversion 
transposition or duplication (Segawa & Aotsuka, 2005; 
Zhang et al., 2020). Identifying the ground patter in P. 
fluviatile, that is within the subfamily Potaminae, further 
confirms that this arrangement is an ancestral 
arrangement for the family Potamidae. 

The phylogenetic analysis covered in this study 
further corroborated the work of Zhang et al., 2020, who 
indicated that the subfamily Potamiscinae is 
monophyletic. In the latter study this subfamily was 
found to be monophyletic when compared to the family 
Gecarcinucidae and other marine crabs as outgroup. 

The current study, through the data on P. fluviatile, we 
were able to compare the phylogenetic connection 
between subfamily Potaminae and the subfamily 
Potamiscinae. Here mitogenomic data confirmed that 
the subfamily Potaminae forms a distinct clade from its 
sister subfamily Potamiscinae, with the two sharing 
common ancestry which is supported by a bootstrap 
value of 100 (Figure 1). Together these two subfamilies 
form Potamidae (Ng et al., 2008), which is here 
represented as a monophyletic family distinct from 
Gecarcinucidae, that is another family of freshwater 
crabs. This confirms the outcome of previous molecular 
studies that used smaller DNA sequences for analyses 
(Klaus et al., 2009; Shih et al., 2009; Tsang et al., 2014). 

 

Conclusion 
 

In this study, we sequenced and annotated the first 
mitogenome for the subfamily Potaminae, as 
represented by P. fluviatile, adding valuable data to a 
better understanding of the phylogenetic and evolution 
patterns within Potamidae. Moreover, this work 
provides the required information to enhance the 
molecular identification of freshwater crabs and 
population studies assisting conservation efforts of this 
species that occurs in highly fragmented populations 
(Vella and Vella, 2020).  
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Table 3. The number of codons and the relative synonymous codon usage (number/RSCU) in Potamon fluviatile mitochondrial PCGs. 

Codon   Codon   Codon   Codon  

UUU(F) 290 / 1.70  UCU(S) 119 / 2.62  UAU(Y) 127 / 1.58  UGU(C) 26 / 1.44 
UUC(F) 51 / 0.30  UCC(S) 21 / 0.46  UAC(Y) 34 / 0.42  UGC(C) 10 / 0.56 
UUA(L) 390 / 4.04  UCA(S) 78 / 1.71  UAA(*) 8 / 1.80  UGA(W) 67 / 1.35 
UUG(L) 30 / 0.31  UCG(S) 8 / 0.18  UAG(*) 3 / 0.70  UGG(W) 32 / 0.65 
CUU(L) 93 / 0.96  CCU(P) 71 / 1.93  CAU(H) 55 / 1.39  CGU(R) 19 / 1.33 
CUC(L) 16 / 0.17  CCC(P) 12 / 0.33  CAC(H) 24 / 0.61  CGC(R) 5 / 0.35 
CUA(L) 45 / 0.47  CCA(P) 51 / 1.39  CAA(Q) 50 / 1.59  CGA(R) 29 / 2.04 
CUG(L) 5 / 0.05  CCG(P) 13 / 0.35  CAG(Q) 13 / 0.41  CGG(R) 4 / 0.28 
AUU(I) 315 / 1.80  ACU(T) 97 / 2.03  AAU(N) 113 / 1.60  AGU(S) 31 / 0.68 
AUC(I) 34 / 0.20  ACC(T) 19 / 0.40  AAC(N) 28 / 0.40  AGC(S) 7 / 0.15 
AUA(M) 204 / 3.47  ACA(T) 64 / 1.34  AAA(K) 85 / 1.81  AGA(S) 75 / 1.65 
AUG(M) 28 / 0.48  ACG(T) 11 / 0.23  AAG(K) 9 / 0.19  AGG(S) 25 / 0.55 
GUU(V) 81 / 1.49  GCU(A) 95 / 2.10  GAU(D) 52 / 1.49  GGU(G) 75 / 1.27 
GUC(V) 7 / 0.13  GCC(A) 29 / 0.64  GAC(D) 18 / 0.51  GGC(G) 18 / 0.31 
GUA(V) 121 / 2.23  GCA(A) 51 / 1.13  GAA(E) 52 / 1.39  GGA(G) 91 / 1.54 
GUG(V) 9 / 0.15  GCG(A) 6 / 0.13  GAG(E) 23 / 0.61  GGG(G) 52 / 0.88 
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