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Abstract 
 

The survival of the progeny and fertilization success depend on high-quality mature 
spermatozoa containing DNA and coding and non-coding RNAs besides the female 
gamete quality. Sperm cells and gonads in fish contain different RNA classes. It is 
possible that the development of fish could be affected by miRNA and/or other non-
coding RNAs being abundant in Teleost fish and having important functions. Studies 
about the presence of miRNA in some fish species (e.g. Danio rerio, Salmo salar, 
Carassius auratus, Cyprinus carpio) showed that sperm motility is regulated by miRNA. 
Nevertheless, limited knowledge and several hypotheses have been presented about 
classes and content of RNAs in fish spermatozoa. More research about the effects of 
miRNA on fish reproduction and sperm quality are needed for population, aquatic 
ecosystems, and broodstock management, and the evaluation of molecular sperm 
quality parameters with miRNA could be used together with traditional techniques. 

Introduction 
 

The reproduction in fish is of vital importance to 
ensure the existence of populations (Dreanno et al., 
1999; Linhart et al., 2000; Rurangwa et al., 2001; Bozkurt 
and Seçer 2006; Cuadrado et al., 2014; Xiong et al., 
2018). Fish is not considered to have adapted to the 
environment if they do not have the ability to 
reproduce. The genetic capacities of species are used for 
assessing the reproductive success related to ecological 
conditions. In this context, each species has its own 
reproductive strategy. Therefore, reproduction is the set 
of strategies and tactics that has been developed to 
ensure the continuity of the species in the evolutionary 
process (Muchlisin, 2014). Within this integrity, there 
are many environmental adaptations such as age of 

sexual maturity, choice of breeding area, period of 
reproduction, amount of gametes produced, and mode 
of reproduction. For successful fisheries management, it 
is essential to assess the species' reproductive biology in 
terms of fish farming (Kutluyer, 2018). 

The quality of gametes plays a primary role in 
aquaculture production. Many biotic and abiotic factors 
affect gamete quality of fish in natural or cultured 
conditions (Islam and Akhter, 2011; Kutluyer et al., 
2014). Biological gamete quality can be described as the 
ability of a sperm to fertilize or an egg to be fertilized 
and turn into a normal embryo. In addition, the quality 
of gametes could be explained by special biotechnical 
differences in the applications depending on the use of 
gametes (e.g. androgenesis, nuclear transfer) (Bobe and 
Labbé, 2010). 
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The term "gene" has been defined for many years 
as parts of the genome that are translated into proteins 
and encode miRNAs (Ying et al., 2008). However, in 
recent years, genome sequencing studies at large-scale 
have demonstrated that humans and mice share a 
similar number of protein-coding genes contrary to 
expectations, and complex organisms will have a greater 
number of genes. In fact, the number of protein-coding 
genes in most advanced living things is in some single-
celled organisms (Dikme et al., 2022). In gene regulation, 
miRNA is essential as the critical element (Herkenhoff et 
al., 2018). In the reproductive processes, the miR-200 
family have an important role in mouse (Hasuwa et al., 
2013). In vertebrates, amh, dmrt1, wt1sox9, and sf1 
have been identified as master genes for the process of 
spermatogenesis and male sex differentiation (Cutting 
et al., 2013; Mei and Gui, 2015; Xiong et al., 2018) while 
wt1, amh, galectin-1, crisp1, dmrt1, sf1, gsk3a, and 
srd5a were correlated with sperm capacity and 
spermatogenesis (Xiong et al., 2018). Hence, sperm 
activity, fertility, and hatching rates are under the 
influence of expression of these genes. In this context, 
the determination and importance of micro RNA 
(miRNA) content of fish sperm cells were presented in 
the review. 
 
Structural Sperm Features of Fish 
 

The male germ cell of fish is called the 
spermatogonia and is composed of three main parts: a 
head, a middle piece, and a tail (Kayalı et al., 1992; 
Lahnsteiner and Patzner, 2008) (Figure 1).  

Head is oval and pear-shaped. In dyed 
preparations, the back of the head is painted very darkly 
with core dyes due to containing highly condensed DNA. 
This part of the head plays an important role in 
fertilization, carrying enzymes released during 
maturation in the spermatozoon epithelium 
(Lahnsteiner and Patzner, 2008). 

The midpiece consists of two parts, the neck and 
the connecting part. The neck is very short and consists 
of a head plate (Moduli anteriores) and an intermediate-
mass (Massa intermedia). Since the neck acts as a 
mobile, the head part gains the ability to move against 
the rest of the spermatozoa. In the combining part; 
transverse disc (Discus transversalis), end ring, axial 
thread, spiral thread, and cytoplasmic sheath. The 
transverse disc is just a motor. The stability of this plate 
is essential for the spermatozoa to move.  The last ring 
(bottom ring or occlusive ring) is a plate of the posterior 
centriole. The axial thread consists of a fibril starting 
from the transverse disc and continuing on the tail. The 
spiral thread is an 8-9 twisted thread made of 
mitocontriles that wraps the thin plasmatic sheath 
around the axis thread. The cytoplasmic sheath is the 
outermost thin membrane (Kayalı et al., 1992; 
Lahnsteiner and Patzner, 2008, Köprücü, 2018). 

The tail is the thinnest and longest part of the 
spermatozoa. It consists of a long main part (Pars 

principalis) and a short last part (Pars terminalis). The 
axial filament runs along the entire tail. The tail allows 
the sperm to move forward with snake-like movements. 
When the sperm is examined as a cell, the head appears 
to fit into the core (DNA) and all other parts of the cell 
body. Because it contains genes and plays the main role. 
Like the ship's propeller, the tail is only a part that 
provides movement. The headless spermatozoa can 
move if its transverse plate is intact. As it can be 
understood from here, the spermatozoon has high 
motility, sometimes its fertilising ability can be low.  
 
Micro RNA 
 

As a post-transcriptional regulator MicroRNA 
(miRNA) was discovered in 1993 for gene expression in 
Caenorhabditis elegans simultaneously in two 
independent studies (Lee et al., 1993; Wightman et al., 
1993). It was observed that the miRNA discovered as Lin-
4 decreased the expression of the protein product, and 
the target gene was not found in DNA sequence analysis 
(Lee et al., 1993). Although protein-coding gene 
expression occurs in a small portion (0.5-2%) of the 
genome, miRNAs constitute only 1-2% of mammalian, 
fly and worm genes. In addition, hundreds of target 
genes are controlled by each miRNA (Bartel, 2009). 

MicroRNAs (miRNA) are single-stranded and short 
RNAs (22-24 nucleotides in length). It has been found 
that genes encoding miRNAs are conserved among 
many different species (Bartel, 2009). These properties 
highlight the importance of the roles of these small 
molecules in physiological processes. It has been 
determined that there are over 1800 miRNAs in humans 
(The miRBase Sequence Database, 2016), and it is 
predicted that these miRNAs regulate human genes 
(approximately 30-60%) (Lewis et al., 2005; Friedman et 
al., 2009). miRNAs function is at the post-transcriptional 
level by binding to the 3'UTR region of mRNA (Bartel, 
2009), at the transcriptional level by binding to the start 
sites of genes (Place et al., 2008), or by acting in 
epigenetic processes (Rodgers et al., 2013). When these 
regulatory molecules bind to the 3'UTR region of the 
mRNA of the target gene, they cause suppression or 
inhibition of gene expression at the post-transcriptional 
level (Bartel, 2009). A single miRNA can have multiple 
target genes and a single gene can be regulated by more 
than one miRNA simultaneously (Sood et al., 2006). 
Mature miRNAs are important in the control of essential 
physiological processes (e.g. cell differentiation, cell 
cycle) (Le Bot, 2012), growth, and apoptosis (Cheng et 
al., 2005). Furthermore, Mineno et al. (2006) have 
demonstrated that they are involved in processes linked 
to gamete development during embryonic 
development, and Eisenberg et al. (2015) have found 
associations with female reproductive activities such as 
ovulation and corpus luteum development, while Björk 
et al. (2010) and Maatouk et al. (2008) have reported 
their involvement in male reproductive functions such 
as spermatogenesis and spermiogenesis. On the other 
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hand, there is information that a mutation that may 
occur in miRNA sequences, a defect in their biogenesis 
(Khazaie and Esfahani, 2014), or polymorphisms in gene 
sequences may lead to infertility (Zhang et al., 2011). For 
this reason, it is thought that examining spermatozoal 
and seminal miRNAs in the investigation of male factor-
related infertility will shed light on the treatment and 
diagnosis process (Barbu et al., 2021). 
 
Biogenesis of miRNAs 
 

In the nucleus, the transcription mediated by RNA 
polymerase II initiates the miRNA biogenesis, and pri-
miRNA (a long miRNA) is formed with the mature miRNA 
sequence in the hairpin structure (Winter et al., 2009) 
(Figure 2). The microprocessor comprised of RNAase III 
enzyme (Drosha) and its cofactor DGCR8 (DiGeorge 
critical syndrome region 8) (Pasha), resulting in the 
formation of pre-miRNA (precursor miRNA) with a 

length of 60-70 nucleotides, cut the hairpin structure. 
Exportin-5 transport (XPO5) the precursor hairpin from 
the nucleus to the cytoplasm and is cut into a 21-24 
nucleotide duplex miRNA by another RNAase III enzyme, 
Dicer. The strand to be cut into the mature sequence is 
loaded into the Argonaute (RISC), forming the miRNA-
induced silencing complex. With missing base pairing, 
miRNA induces RISC and causes mRNA destabilization or 
translational suppression. 
 
Biomaterials Containing miRNAs 
 

Differentially expressed miRNAs between tissues 
are found in the cell, extracellular, circulation, and body 
fluids. Tissues, cells, and fluids have their own miRNAs 
(Guo-Hua, 2014; Dikme et al., 2022). miRNAs are found 
in biological fluids such as cerebrospinal fluid (CSF), 
pleural effusion, urine, eye fluid, saliva milk, bile, blood, 
and plasma (Javidi, 2014; Dikme et al., 2022). 

 

Figure 1. Structural sperm features of fish adapted from Kayalı et al. (1992) 

 

 

Figure 2. A schematic of miRNA biogenesis adapted from Hajarnis et al. (2015) and Pisarello et al. (2015) (Drosha: RNAase III enzyme, DGCR8: 
DiGeorge critical syndrome region 8, pre-miRNA: precursor miRNA, XPO5: Exportin-5 transport 
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The Methods Used in the Assessment of miRNA 
Content 
 

The regulatory mechanisms in miRNAs are 
assessed by integrating mRNA and miRNA expression 
data associated with next-generation sequencing or 
microarray analysis. On the other hand, it is difficult to 
obtain results using this approach for translationally 
repressed miRNA targets (mRNAs). Therefore, using 
mRNA sequences to characterize miRNA-target 
regulation may result in missing real targets, so this 
approach may be inaccurate (Dikme et al., 2022). 

RNA isolation techniques (the column and 
chemical-based) have been used effectively for the 
isolation of mRNA, and these methods have restrictions 
regarding their use for miRNA (Moldovan, 2014). There 
are two commonly used approaches for the evaluation 
of miRNA levels. These approaches are methods based 
on qPCR (quantitative PCR) and sequencing (Mestdagh, 
2014). 

Define miRNA targets allows the definition of 
targets regulated at the translation level and uses Ago2 
immunoprecipitation. To enhance mRNAs integrated 
into RISC, Ago2 immunoprecipitation is used and thus 
targeted by a miRNA (Dikme et al., 2022). 

As the critical steps, the evaluation and 
transparency of miRNA data have been important in 
recent years. Other strategies (a few stable reference 
genes or global mean normalization) can be used to 
solve this problem (Mestdagh, 2014; Zhao et al., 2017). 
In order to enhance the transparency of the evaluation, 

detailed information about the name and sequence of 
miRNA should be given in the publications (Van Peer, 
2014). Software such as miR-tracker can be used for this 
(Dikme et al., 2022). 
 
The Gonadal miRNA Content in Teleost 
 

The multiple biological processes such as 
apoptosis, immunity, differentiation and proliferation of 
cells, energy metabolism, gametogenesis, embryonic 
development and, metamorphosis are regulated by 
miRNAs (Figure 3) (Brennecke et al., 2003; Yeh et al., 
2014; Nixon et al., 2015; Vienberg et al., 2017; Wang and 
Zhu, 2017; Conine et al., 2018; Qi et al., 2018; Li et al., 
2020; Alvi et al., 2021). Micro RNAs (miRNAs) are found 
in the sperms of fish in vertebrates. These non-coding 
RNAs are about 22 nucleotides long, and the regulation 
of biological processes, including spermatogenesis, 
occurs by translation suppression resulting from binding 
to the 3′ UTR of mRNA (Yadav and Kotaja, 2014; 
Bizuayehu and Babiak, 2020). Micro RNAs (miRNAs) 
families have been reported in the gonads of different 
fish species (Table 1).  
 
The role of miRNA on Fish Spermatogenesis 
 

The role of miRNA in fish spermatogenesis is 
illustrated in Figure 4. In testis, the proliferation and 
maintenance of Leydig and Sertoli cells as germ cell-
supporting somatic cells are provided by miRNAs 
(Bizuayehu and Babiak, 2014). In particular, the Sertoli 

 

Figure 3. Summarize the potential roles of miRNAs in the multiple biological processes of fish 
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cell number of sexually mature fish is important in 
sperm production as a limiting factor (Schulz et al. 2010). 
During spermatogenesis, the role of miR-872, miR-24, 
and miR-125a-3p in translational control has been 
reported by Papaioannou et al. (2010) with the Sertoli 
cell-specific Dicer conditional knockout mouse model. 
Primordial germ cells (PGCs) carry the genetic 
information. During embryogenesis, gametogenesis in 
fish starts with asymmetric mitotic divisions of PGCs 
(Bizuayehu and Babiak, 2014). The migration of PGCs to 
the genital ridges is realized, and then PGCs are 
transformed into oogonia or spermatogonia during sex 
differentiation after the formation of gonocytes 
(Lubzens et al. 2010; Richardson, et al. 2010; Schulz et 
al. 2010). Köprunner et al. (2001) and Mickoleit et al. 
(2011) reported the importance and necessity of tdrd7, 
Nanos, and hub for the maintenance, survival, and 
migration of PGCs. In PGCs, 3′-UTR-binding sites are 
protected by Dead end (Dnd) (RNA-binding protein) 
from miR-430-mediated repression (Kedde et al. 2007). 

Qiu et al. (2018) reported the presence of miR-202-5p in 
medaka testis during all stages of spermatogenesis and 
decreased until the development of early spermatids. In 
addition, they demonstrated that the spermatogonia 
and spermatocytes contain the Opiwi abundantly while 
the presence of the Opiwi in spermatids and sperm was 
minimal level in medaka. 
 
The Importance of Assessing the Spermatozoal miRNA 
Content in Fish 
 

In reproductive events, fertility and hatching rates 
are positively correlated with sperm quality (Dreanno et 
al., 1999; Linhart et al., 2000; Rurangwa et al., 2001; 
Bozkurt and Seçer 2006; Cuadrado et al., 2014; Xiong et 
al., 2018). In studies conducted to understand and 
improve sperm physiology and quality, determining the 
number and motility of sperm cells in the sperm fluid is 
the most widely used parameter to define sperm quality 
(Bromage and Roberts, 1995). However, all physical 

Table 1. The gonadal microRNA families in Teleost fish species (miRNA:microRNA) 

Species 
MiRNA families 

Researchers 
Ovary Testes 

Hippoglossus 
hippoglossus 

miR-145, miR-143, miR-199-3p, miR-199, miR-202-3p, miR-100, miR-9-
3p, miR-125b, miR-19b- 3p, miR-19b 

let-7a, miR-143, miR-145, miR-202-3p 
Bizuayehu et al. 

(2012) 
Pelteobagrus 
fulvidraco 

miR-21-5p, miR-21-3p, and miR-462-5p miR-9-3p, miR-103b-3p, and miR-7b 
Jing et al. (2014), Wang 

et al. (2018) 

Paralichthys 
olivaceus 

miR-143, miR-181a, miR-10c, let-7c, miR-21, let-7a, let-7f, let- 7 g, miR-
100-5p, miR-92a 

pol-miR-9-5p, pol-miR-182-5p, pol-miR-
153a, pol-miR- 

26b and pol-miR-26a 
Gu et al. (2014) 

Oreochromis 
niloticus 

miR-34c-5p, miR-153-5p, and miR-749 miR-1306-5p, miR-132b, and miR-18c Xiao et al. (2014) 

Takifugu rubripes 
miR-145-5p, miR-202-5p, miR143-3p, miR-145b-5p, miR-100- 5p, miR-

22a-3p, miR-125b-5p, miR-223-3p, miR-451-5p, miR199-5p 

fru-miR-202-5p, fru-miR-24-3p, fru-miR-
145b-5p, fru-miR-2478-3p and fru-miR-

2898-3p 

Wongwarangkana 
et al. (2015) 

Danio rerio 
miR-21, miR-92a, miR-10c, miR- 202-5p, let-7a, miR-27c-3p, miR- 25, 

miR-126a-3p, miR-26a, miR- 145 

dre-let-7a, dre-miR-125a, dre-miR-132-
3p, dre-miR-150, dre-miR-212, dre-miR-

735, dre-miR-2187-5p, dre-miR-2189 
Vaz et al. (2015) 

Oreochromis 
niloticus 

miR-727, miR-129, and miR-29 
miR-132, miR-212, miR-33a, and miR-

135b 
Tao et al. (2016) 

Oryzias 
melastigma  

miR-21, miR-143-3p, miR-181, miR-100-5p, miR-26c, miR-181a- 5p, miR-
143, let-7b, miR-10b-5p, miR-100-5p 

 Lai et al. (2016) 

Oplegnathus 
punctatus 

miR-92 family, let-7 family, opu-miR-25-3p, 
opu-miR-133a-3p, opu-miR-200a and opu-miR-429a 

opu-miR-21, opu-miR-100-5p, opu-miR-
10 and opu-miR-202-5p 

Du et al. (2018) 

Acipenser 
schrenckii 

miR-203b-3p, miR-301a-5p, miR-146b-5p and miR-2779 
miR-9b-5p, novel-28, miR-30d, miR-27e, 

let-7a-5p, 
miR-200b and miR-16-5p 

Zhang et al. (2018) 

Oryzias latipes 
miR-143, mir-202-5p, miR-21, let-7a-5p, miR-26, miR-146a-5p, miR-30a-

5p, miR-26, miR-181a- 5p, miR-22 
miR-202-5p, pc-5p-214-47,91 Qiu et al. (2018) 

Danio rerio 

miR-22a-3p, miR-100-5p, miR- 20a-5p, let-7a, miR-26a-5p, miR- 92a-3p, 
miR-143, miR-9-5p, miR-99, miR-21, miR-22a-3p, let-7a, miR-100-5p, 

miR-143, miR-21, miR-202-5p, miR-99, miR-20a-5p, miR-26a- 5p, miR-
181a-5p 

 Wong et al. (2018) 

Oreochromis 
niloticus 

miR-199a-3p, let-7c, miR-140-3p miR-100-5p, miR-146a-5p, let- 7a-5p, 
miR-143-3p, miR-21-5p, 

miR-145–5p Pinhal et al. (2018) 

Cyprinus carpio miR-101a, miR-199-5p 
miR-143, miR-99, miR-101a, miR-100, 

miR-22a, miR-146a, miR-21, and miR-7a 
Tao et al. (2018) 

Danio rerio 
miR-202-5p, miR-143, miR-22a- 3p, miR-92a-3p, miR-26a-5p, miR-181a-

5p, miR-21, miR-30d, miR-27c-3p, miR-27b-3p 
 Zayed et al. (2019) 

Trachinotus 
ovatus 
 
 
 

dre-let-7c-5p, dre-miR727-5p, dre-miR-181a-5p, dre-miR-92a-3p, Novel 
miRNA 124, and 

Novel miRNA 190 

dre-miR-7b, dre-miR-7a, 
dre-miR-143, dre-miR-101a, dre-miR-

144-3p, dre-miR-202-5p, dremiR-153a-
3p, and dre-miR-301a 

He et al. (2019) 

Acanthopagrus 
latus 

miR-200, miR-29, miR-21, and miR-725 
let-7, miR-10, miR-7, miR-9, and miR-

202-3p 
Li et al. (2020) 

Salmo salar miRs 92a-3p, 202-5p, 15c-5p, and 30d-5p 
miR-15c-5p, miR-30d-5p, miR-93a-5p, 

and miR-730-5p 
Bizuayehu and Babiak 

(2020) 
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Figure 4. Schematic figure demonstrating the role of miRNA on fish spermatogenesis. 
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parameters directly related to the fertilization capacity 
of sperm can potentially be used for the evaluation of 
sperm quality. In research, sperm density, osmotic 
structure, pH of seminal fluid, chemical structure of 
sperm and seminal plasma, enzymatic activities, 
concentration of ATP (adenosine triphosphate), motility, 
morphological structure, fertilisation capacity, and 
other features are used to define the quality of sperm 
(Billard et al. 1995; Lansteiner et al. 1998; Fauvel et al. 
1998; Geffen and Evans, 2000; Chowdhury and Joy, 
2001). 

Semen analysis has a great place in the assessment 
of male infertility. Molecular sperm parameters 
evaluation with miRNA could be used with traditional 

techniques (Figure 5). In this analysis, traditional semen 
parameters such as semen volume and pH, motility, 
morphology, and concentration of spermatozoa, are 
examined (Kutluyer Kocabaş, 2022). It has been revealed 
that miR-210-3p may play a role in sperm cell apoptosis 
by activating caspase-3 (Kaya, 2023). Glycolysis can 
provide energy for sperm cell motility via anaerobic 
respiration. MiRNAs are known to engage in the 
glycolytic process by regulating target genes. Reduced 
expression of let-7b-5p has been demonstrated to 
reduce glycolysis in asthenozoospermia through 
inhibiting AURKB (Wang et al., 2020). On the other hand, 
debates continue about the adequacy of these analyses 
in evaluating male infertility (Lewis, 2007), and studies 

 

Figure 5. Schematic representation of sperm parameters evaluation methods adapted from Riesco et al. (2019) 
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are carried out to develop new fertility markers 
(Lalancette et al., 2009). Comparatively investigated 
spermatozoal RNAs between fertile and infertile 
individuals are among the recommended biomarkers 
(Jodar et al., 2012; Malcher et al., 2013; Garrido et al., 
2013). Thus far, a few researches on miRNA have been 
performed in fish spermatozoa. miRNA profiling and 
abundance in zebrafish (Danio rerio) sperm have been 
documented by Jia et al. (2015) and Riesco et al. (2019). 
Amos (2008) stated that sperm motility and flagellar 
stability may linked with Tekt1 (a member of the tektin 
family) through involvement in sperm flagellum 
formation. Xu et al. (2015) and Tao et al. (2018) reported 
downregulation of sperm motility and flagellar assembly 
by a series of important genes (Dnahs, Dnal1, Ifts, and 
Dnaaf1) expression in sterile triploids [Carassius auratus 
red var. × (Carassius auratus × Cyprinus carpio)] 
compared to fertile diploids (Carassius auratus red var.). 
Tao et al. (2018) showed these differentially expressed 
genes' impairment in gamete formation of triploid lines. 
Xiong et al. (2018) stated that sperm motility is 
regulated and improved in Zebrafish with an miR-200 
Cluster on Chromosome 23. wt1a, amh, and srd5a2b are 
sperm motility-related genes and direct targets of miR-
200s on chr23. In addition, they reported that the 
motility traits of sperm were reduced with ectopic 
expression of miR-200a, miR-200b, and miR-429a. 
Bizuayehu and Babiak (2020) have expressed miRNAs, 
miR-92a-3p and miR-202-5p in somatic supporting cells 
and spermatogonia in the immature testis of Salmo 
salar. 
 
Conclusion and Perspectives 
 

In aquaculture, reproductive success depends on 
high-quality gametes. As the key regulators, miRNAs 
affect gene expression, physiological processes, and 
fertilization success. In particular, repression and 
activation of maturation are linked with miRNA by 
suppressing mRNAs/pathways. Traditional techniques 
are insufficient to evaluate sperm quality parameters 
and male fertility potential. miRNAs regulate sperm 
quality and can be potential markers and provide some 
developments in alternative applications of miRNAs. 
The miRNA biogenesis pathway seems to be a potential 
target for understanding the mechanisms of different 
physiological events and sperm quality at the molecular 
level and alternative applications for enhancing global 
aquaculture production. 
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